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ABSTRACT 

This paper gives the status of theoretical and experimental efforts at JPL in the development of environmentally robust 
(Radiation Hard and Radiation Tolerant), ultra-low power, high performance CMOS active pixel sensor (APS) imagers for 
star trackerhager applications. The work explores the effect of imager performance on star position accuracy, specifically 
examining the performance of JPL designed APS imagers. Accuracy is estimated as a function of star magnitude for a 
nominal star tracker optical design. Using these APS sensors, which have wide dynamic range and no blooming, 
simultaneous imaging of widely differing star magnitudes during the same observation is possible. It is shown that prototype 
Rad Hard APS imagers already meet many next generation, star trackerhager mission performance requirements when 
operated at reduced temperatures. These images also provide excellent performance at cryogenic operating temperatures 
appropriate to some anticipate flight missions. APS imagers with their high level of integration, on-chip timing and control, 
ultra-low power, and environmental robustness are excellent candidates for NASA's earth observing, interplanetary and deep 
space exploration missions, 

Keywords: Star tracker, Active Pixel Sensor, APS, Radiation 

1. INTRODUCTION 

Star trackers (also known as star imagers) are an essential component of spacecraft attitude control systems. Modern star 
trackers achieve sub-pixel accuracies by centroiding defocused star images, attaining accuracies approaching a hundredth of a 
pixel'. '. The imaging devices in these star trackers are generally CCDs. However, CCDs are very sensitive to the radiation 
environment found in space. In particular, displacement damage, which is readily caused by proton irradiation, degrades the 
charge transfer efficiency (CTE) of CCDs. This, in turn, produces apparent shifts in the positions of imaged objects. The 
apparent shifts depend on image brightness and location within the array, making correction difficult. This has led star tracker 
designers to investigate alternate imagers. 

The CMOS active pixel sensor (APS) has been under development for some time3' '. Because it does not rely on charge 
transfer, it is not subject to the apparent image shifts with radiation that CCDs experience. The APS also has other benefits as 
a star tracker imager, including extremely low power, simple power supply demands and a high level of integration. In 
addition, the APS can be operated over a wide range of temperatures, down to cryogenic temperatures. It can therefore be 
placed in the same focal plane as an infrared array, if desired. 

The present work is part of an effort to develop radiation hard active pixel sensors for star tracker applications. Unfortunately, 
there has been little published work on radiation effects in active pixel sensors

s
7 61 '. However, our own experience has been 

that active pixel sensors fabricated in standard, commercial CMOS processes tend to exhibit large increases in dark current 
with radiation. Likewise, the evaluation of active pixel sensors for star tracker applications has been promising, but cursory'. 
Active pixel sensors, in general, lag somewhat behind CCDs in performance, at least prior to irradiation. 

Having been successful, as reported elsewhere, in producing active pixel sensors with a remarkable tolerance to radiation, it 
remained to evaluate their potential as star tracker imagers. The goal was to achieve an accuracy of -0.0 I pixels. Not having 
found appropriate models relating imager performance to star tracker accuracy in the literature, we have developed some. 
These are presented in the next section of this paper, while the remainder applies those models to measured APS results. 
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2.1. General considerations 

2. ACCURACY MODEL 

While there have been many papers published on star tracker , these have tended to take a system level 
perspective. The need here was for a simple model that could be used as a yardstick for evaluating W l e d  imager 
performance for star tracker applications. The model here attempts to concern itself only with imager ‘jwformance, 
independent, for example, of optidal system design. There is one exception here, however, to the extent that imager 
performance effects depend on the window size and the spot size. Therefore, Section 2.2 contains a brief discussion of 
pixelization and spot size effects. 

The model is based on a simple centroid (center of mass) calculation over an m X m window. Although other algorithms 
have been shown to offer slightly improved position estimation perf~rmance~~, the error calculations for a centroid are 
straightforward and do not require the use of Monte Carlo calculations. Accuracy is calculated as RMS error, per star, per 
axis. 

2.2. Pixelization and spot size effects 

The effects of pixelization and spot size have been examined previously”. The purpose of the discussion here is to establish 
simply the parameters to be used for the imager performance analysis. Additionally, fill factor effects are considered, since 
the APS, unlike the CCD, has a fill factor significantly less than one, and may have spatial non-uniformity in its response. 

The error evaluated in this section is known as the algorithm bias error1’* 12. This is the difference between the “true” star 
position and the estimated star position, and results from the fact that pixelization (i.e., sampling), even in the absence of 
noise, distorts the point spread bct ion.  

The model assumes, as in previous work, that the point spread function can be represented as a two-dimensional Gaussian: 

where (X,.,, y,)represents the position of the “true” star image center, and aj,,sF is the spread of the Gaussian. For 
convenience, we will use as the pixel pitch as the unit of distance, with the pixels centered on the grid points. We also assume 
that the photosensitive are is an h X h square centered at the center of the pixel. Finally, as stated above, we compute the 
centroid over an m x m window, with the “true” star position somewhere in the central pixel. 

In the x direction, the estimated centroid position, 2 , is given by 

where XI = i is the x position of pixel (i, j), and u, is the detected signal at pixel (i, j). Calculation of i as a function of 

x0can be performed readily with a spreadsheet program, making use of the cumulative normal distribution fbnction to 
calculate the pixel signals. 

Because actual star positions will be random, the calculation is performed for x. in the range [ - O S ,  +OS], and the R M S  error 

computed. Figure 1 shows the results as a function of cPsF for various window sizes with h=l . For small values of UPSF 
the error is large and independent of the window size. The tightly focused spot is estimated to be in the center of whatever 
pixel it is in, regardless of its actual location within that pixel. As D~,~~, . .  increases, the error reaches a minimum and then 
begins to increase slowly. This is due to uneven losses of the signal outside the window for larger spots. The minimum error 
decreases rapidly with increasing window size, reaching less than 0.001 pixel for a window size of only 5 x 5 .  As will be 
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shown in the next section, the error due to noise increases with the window size. We therefore conclude that 5x5 is the 
optimum window size, with a corresponding oPsF -0.7, and will use these parameters in further calculations. 

Figure 2 shows the RMS error as a function of a,, for various values of the photosite size, h, with the window size fixed at 
5x5. As the photosite size decreases, the error increases slightly, and the minimum is shifted to somewhat lat@ier values of 
oPsF . These changes occur rapidlj and then saturate, with virtually no change beyond M . 2 .  For a non-unifom.sub-pixel 
response function we may view the output as the weighted superposition of infinitesimal photosites. Although the argument 
is not rigorous, it suggests that comppble bias errors can be achieved even in this case. 
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Figure 1. RMS centroid bias error as a function of spot size for Figure 2. RMS centroid bias error as a function of spot size for 
various centroiding window sizes. different photosite sizes. 

A few words are in order concerning the pixelization model and its assumptions. Although it has been argued that the 2-D 
Gaussian is a reasonable approximation for the Airy pattern, the main reason for its use here was computational simplicity. 
Calculations using a simple circular spot yield somewhat different results. This spot profile may more closely model a 
strongly defocused system, but is computationally more difficult. The bias errors are several times larger than for the 2-D 
Gaussian, and the characteristics of the minimum are different. The error decreases with increasing spot size until the edge of 
the reaches the edge of the centroiding window (r>2 for a 5 x 5  window), after which it increases rapidly. The optimum spot 
size is therefore larger than for the 2-D Gaussian. Nonetheless, an RMS error of 0.005 pixel is achieved for a 5x5 window. 
The performance for real image spots is probably intermediate between these. 

A warning must also be made about Cassegrain type optics. The point spread function for such telescopes, when defocused, 
contains a hole in the center. Particularly for imagers with less than 100% fill factors, the interaction between this hole and 
the pixelization will produce large errors. 

Finally, it must be reiterated that the error discussed in this section is a bias fiom the use of the centroid of the pixelated 
image as an estimate of the spot position. Use of unbiased estimators, such as Gaussian fits and maximum likelihood 
 estimator^'^"^, will avoid this error component. Even with the centroid calculation, for a known point spread function the bias 
can, in principle, be computed and corrected. 



2.3. Noise Effects 

In this section, we calculate the effects of various noise components on centroiding accuracy. We begin by assuming that the 
measured signal u, at pixel (i, j )  consists of two components: a ‘’true” signal, L, , and a noise or error signal, E~ , i.e. 

u, = L, + gi j  . If the noise terms are small, we can determine the corruption of the centroid estimate &om a differential. 

Deftning the total signal, Li = L, Lo, and the “true” centroid position, X, = Lo , it can be easily 
i , i  

shown fiom a differential analysis thpt the centroid error due to noise is 

We have made no assumptions so far about the gg , except that they are small, specifically that x€, << Z L ,  . The 

variance of the centroid error is then 
i d  i j  

where ( 0  -) represents the expectation value. 

Equation (4) is the basis of the analysis here, and we will use it to analyze different kinds of noise, e.g. temporal vs. spatial, 
correlated vs. uncorrelated, constant vs. signal dependent. Furthermore, the calculations are analytical, without dependence on 
Monte Carlo simulations. These two features set the present analysis apart from previous work. 

Read noise 

Read noise is the simplest form of noise for this analysis. It is a constant, uncorrelated, temporal noise. We will assume that it 

has a zero mean and a single, fixed variance, , for all pixels. The zero mean derives fiom background subtraction, which 2 

will be considered later. We need not make any firher assumptions about the distribution of Eij . 

Within a given image M e  &g and &i,,+ are uncorrelated, i.e. ( 6, gj.) = 0 , so the cross terms due to the square in (4) 

vanish. Equation (4) then becomes 

The summation in (5) depends only on the geometry of the centroiding window. Since the actual star position is unknown, 
X, should also be considered a random variable, uniformly distributed on [-OS, 0.51. Performing the sum for a 5 x 5  window, 

and using the fact that (X:) = x2 , we obtain the RMS error due to read noise 

This RMS error is inversely proportional to the signal-to-noise ratio, where the signal is the total star signal over the 
centroiding window, and the noise is the per-pixel read noise. Any operation that increases the star signal, in particular 
increasing the integration time, will improve the accuracy. 



Considering equation ( 9 ,  as the size of the centroiding window increases, both the number of noisy samples and-their 
moment arms increase, so that the prefactor in equation (6) scales as m2 . Thus, it is highly unfavorable, as noted in the 
previous section, to use an overly large centroiding window, a conclusion also reached by other authors. 

Fixed mttem noise (FPN) 

Fixed pattern noise (FPN) refers to temporally constant output offset that varies in a particular spatial pattern, where the 
term offset implies that this noise is mdependent of the integration time and the signal level. The fixed pattern noise, which is 
filly described by specifjbg the offset at each pixel, can be decomposed into three components: a fully random per-pixel 
FPN, a per-column FPN, and a per-row FPN, the distinction being important in the summation of equation (5 ) .  We assume 
that all three of these FPN components are random, with variances upFpN , u,,,, , and uMpN , respectively. This excludes 
specific patterns, such as sinusoids, which may result from hum pickup. 

2 2 2 

Since the per-pixel FPN is fully random and uncorrelated, its mathematics are identical to those for read noise. We 
immediately obtain, for the 5x5 window, 

However for the per-column FPN all the &# within a column are identical. After first summing over all the pixels in a 
column, equation (5) then becomes 

6 = - x o ) E i p o .  
i 

Computing the centroiding error variance, we get 

Note the s u m  overj has produced a factor of m2 in (9), whereas for PFPN it produced only a factor of m . This is because 
the offsets in a column all add coherently, rather than randomly canceling out. For the 5 x 5  window we get 

The calculations for the per-row FPN follow identically. 

Dark current non-uniformity 

Imagers, in general, exhibit some dark current, and that dark current will vary from pixel to pixel. If we let o&,,,~~ represent 

the variance of the dark rate, then the variance of the resulting error signals is (7&.N[/  t,, , where ti,,, is the integration time. 
Following the same approach as for read noise, we get for the 5x5  widow 

2 

Since Lo is proportional to ti,,,, in this case we find that increasing the integration time does not improve the accuracy, 
although, of course, using a brighter star or faster optics will. 
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Dark current shot noise 

In addition to its spatial variation, dark current is subject to shot noise, a temporal variation due to statistical fluctuations in 
the generation process. If we let Ihh represent the dark current, in electrons per second, then the dark signal will be 

t i , .  For shot noise, the variance of the signal is equal to the mean value of the signal. Again following the same 
approach as for read noise, we get fyr the 5x5  widow 

In this case we find that that the centroiding error varies as 1/K. 

Photoremnse non-unifmitv 

Inevitably, the photoresponse of an imager varies slightly fiom pixel to pixel. The calculation in this case is made more 
complex by the fact that the error signal depends on the "true" signal. Let rg represent the relative response at pixel (i, j), and 

let o~~~ be the variance of rg . Then E# = (rg - 1)L, = bkg L, . Substituting in (6), and noting that the Eg are still 
uncorrelated from pixel to pixel, we obtain 

2 

The summation here depends only on the shape of the point spread function. For the optimum point spread function 
determined in the previous section we may perform the sum numerically, averaging over x0 and yo . We obtain 

The prefactor in (16) is independent of the centroiding window size because the summation is cut off by the fall-off of J$ , 

and it is also surprisingly insensitive to aPsF and to the fill factor. Note that this error component is independent of the 
signal level. 

Photon Shot Noise 

Like the dark current, the star signal is also subject to shot noise. There are several stages in the collection of photoelectrons, 
i.e. arrival of photons at the optical aperture, transport through the optics, absorption by the detecting material and collection 
of the photoelectrons. Although each of these steps may be viewed as a Poisson process, with its own shot noise contribution, 
the overall process is also a Poisson process. We may then compute the overall shot noise from the mean detected signal, 
without considering the intermediate steps. 

For photon shot noise, the noise values are no longer spatially uniform, making the calculation somewhat more complex. 
Specifically, the variance of a given E~ is just , using electrons as the unit of signal. Substituting this in (6), and making 

use of the fact that the &ij are still uncorrelated from pixel to pixel, we obtain 

The numerator of (1 5 )  is just Lo times the second moment of the point spread fbnction. For a Gaussian profile then 



Note that the detector performance enters this only through the effect of quantum efficiency on & . This error component 
sets a limit on possible performance,. A star position simply can not be accurately determined without an adequate supply of 
photons. c 

Backmound subtraction ! 

In all of the above, it is assumed the &g have a mean value of zero. However, real star images generally have a background 
due either to imager dark current or to actual astronomical background light. Failure to properly subtract the background will 
shift the estimated centroid position by corrupting the denominator in (2). Assuming an error &bg in the background 

estimate, and noting that xu = 0 and (Xi) = x2 , equation (6) gives us 
iJ 

or equivalently, for the 5 x 5 window 

O B ,  a;,& = 1.44- . 
b 

Typically, &e background level is estimated fiom the (m + 2)2 - m2 pixels forming a ring around the centroiding widow. 

Assuming these have an RMS noise go, which we may assume to be equal to the largest noise term, we obtain for the 5 x 5  
window 

0 0  = 0.29- . 
LO 



Table I 
Summary of accuracy model 

Noise Component I Formula 

Read Noise 

Per-Pixel FPN 
I 
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Dark Current 2 
Non-Uniformity 
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Photoresponse 
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Photon Shot Noise I O;,PSN = (‘ij - 

Background 
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5x5 1 ti, dependence 

independent 
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3. ACTIVE PIXEL SENSORS 

3.1. APS description 

CMOS Active Pixel Sensors come in many varieties, but have the common feature that each pixel contains a photosite, an 
amplifier and a select switch for analog multiplexing. This sets the APS apart from the CCD, where the signal is read out by 
repeated shifting. Because there is no charge shifting, the APS is not susceptible to the CTE degradation that besets CCDs in 
a space radiation environment. On the other hand, the multiplexing scheme often produces increased fixed pattern noise, 
particularly per-column fMed pattern noise. 

The photosite in an APS may be either a photogate or a photodiode, each having its own advantages. Likewise, a large 
variety of amplifier and multiplexer designs are, in principle, possible. However, since the pixel amplifier and select switch 
take up space in the pixel at the expense of the photosite, reducing the fill factor, a simple source follower amplifier and pass 
transistor are generally used. 

Because the APS is made in a standard CMOS process, a ful l  range of analog and digital processing circuits are available, 
including analog-to-digital converters. It also allows the leveraging of the large volume of CMOS business for the process 
development and maintenance costs. In particular, considerable resources have been devoted to the development of radiation 
hard CMOS processes, and these are available for APS fabrication. 

In response to the need for imagers for high radiation space environments, particularly for star tracking applications, JPL has 
investigated radiation effects in active pixel sensors, and the opportunities for radiation hardening. An active pixel sensor, 
designated RHAPS, was designed and fabricated in the Lockheed-Martin RHCMOS-5M process. This is a radiation hard, 



0.5 pm, single poly, triple metal process. This imager and its performance will be analyzed for star tracker applications based 
on the models developed in the fvst part of this paper. 

The RHAPS is described more fully elsewhere16, but a brief summary is given here. The imager format is a 256x256 
photodiode array, with a 20 pm pitch. The relatively large pitch was chosen to allow for a good fill factor while including a 
variety of layout features hoped to improve radiation performance. A fill factor of 47% was achieved. The photodiode was 
chosen because experience had shown that photodiodes are less sensitive to radiation than are photogates. Double-Delta 
sampling was used to reduce the pe(r-column frxed pattern noise. The RHAPS is "smart" chip, with f i l l  timing and control 
integrated on chip. The imaging window and integration time are programmable through a set of registers. However, the 
RHAPS does not include an analog-ta-digid converter; only analog output is available. 

3.2. R H A P S  performance 

The performance of the RHAPS is summarized in Table I1 for 5 V operation at room temperature. The RHAPS was designed 
to operate at either 5 V or 3.3 V. -Operation at 3.3 V results in lower dark current, but also a lower f i l l  well capacity. Total 
power consumption is less than 20 mW. 

The dark current is surprisingly high in these devices, corresponding to 60 nA/cm*. This is two orders of magnitude larger 
than dark currents seen on imagers fabricated in standard commercial processes, and is believed to have resulted from 
problems during wafer processing. Test structure results show that this dark current is proportional to the diode perimeter. A 
second run is being submitted to test this hypothesis. 

Figure 3 shows the error components computed fiom the accuracy model using the pre-radiation, room temperature results in 
Table 11, where the horizontal axis is the total collected signal per star, 4,  measured in electrons. The corresponding visual 
star magnitude is shown for reference on the upper axis, based on a nominal optical system design, i.e. a 5 cm aperture, 
100 ms integration time, 50% optical throughput and 30% effective quantum efficiency. 

With dark current non-uniformity and dark current shot noise eliminated by cooling, the next most significant error 
component is due to the per-column fixed pattern noise, limiting the performance to -0.0 1 pixel at Mv=2.5 or -0 .1 pixel at 
Mv=4.5. Investigations are under way to determine if the CFPN, which is 4 . 1 %  of fbll  scale can be further improved, but 
this performance is already comparable to other APS devices. Although fxed pattern noises, and even dark current non- 
uniformity, are in principle correctable by subtracting dark fiames, this is not considered practical in most star trackers, since 
a shutter would be required. However, it should be possible to measure and correct per-column fixed pattern noise by use of a 
dummy row, in which the signal is forced to be zero. 

Although the read noise is not a major factor in the error budget at this time, it is still relatively large compared to other 
imagers, particularly CCDs. The read noise is mostly attributable to reset noise, also known as kTC noise, and it is large 
because the RHAPS contains a rather large photodiode. In addition to the use of smaller photodiodes in fbture generations, 
we are investigating the possibility of off-chip correlated double sampling (CDS) to reduce this noise. 

Finally, there is one error component which was not analyzed in the model above, that due to nonlinearity, because 
nonlinearity is very difficult to parameterize. The nonlinearity of the RHAPS is relatively large, with the conversion gain 
decreasing from 2 pV/e' for small signals to - 1 pV/e' near saturation. This is because of the doping profiles in this particular 
process, and because the signal swings are large compared to the bias voltages. We performed simulations of centroiding 
error similar to those described above, using the measured RHAPS nonlinearity. It is found that the RMS error is 
-0.003 pixel when the central pixel reaches saturation, and only 0.01 pixel at ten times this level. This relies on the fact that 
the APS is extremely resistant to blooming. Thus, nonlinearity is not an issue for centroiding accuracy. Nonlinearity can, in 
any case, be calibrated out 



Table II 
RHAPS Performance 

Parameter Value Conditions 
Peak Quantum Efficiency -50% 500 nm 
Conversion Gain 2.0 pV/e’ small signal 
Full Well f 800,000 e‘ 5v 
Read Noise 
Dark Current 1 5 10” e% Pre-rad, room temperature, 5 V 

:. 3.8.106 e’/s 5 Mrad, room temperature, 5 V 
Dark Current Non-Uniformity 1.5-10’ e’/s Re-rad, room temperature, 5 V 
Per-Pixel Fixed Pattern Noise 100 e‘ 
Per-Column Fixed Pattern Noise 500 e‘ 
Photoresponse Non-Uniformity 0.8% 
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Figure 3. RMS centroid error components as a function of star signal for the RHAPS. Star magnitudes 
are based on a nominal optical system design 

3.3. Radiation Testing 

Details of the radiation testing of the RHAPS are described elsewhere, but are summarized here. Testing was performed 
unbiased with Corn to 5 Mrad, biasedoperating with Corn to 2 Mrad, and unbiased with 63 MeV protons to 1.2- 10” p”lcm2. 
For the Corn exposures. the only significant change was an increase in the dark current, with little difference between the 
biased and unbiased cases. The dark current increase was approximately linear with dose, and corresponds to approximately 
18 pA/cm2/krad for 5 V operation. This low value is comparable to the dark current increase to be expected from 
displacement damage in a space proton radiation environment. The displacement damage dark current is not very amenable 
to radiation hardening efforts, and so represents a floor for radiation performance. 

I t  was also found that the dark current nonuniformity did not increase measurably with Co60 irradiation. This is probably 
because the dark current nonuniformity is dominated by the nonuniformity of the initial, high dark current. This is significant 



because it implies, fiom Fig. 3, that the accuracy will not be degraded by radiation. This should also apply in the case that 
process improvements decrease the initial dark current, although we have on other APS imagers, observed some increase in 
dark current nonuniformity with radiation. 

Finally, no measurable change was observed with proton irradiation. In particular, no increase was seen in the number of hot 
pixels. Again, these effects are probably present to some smaller degree, but are masked b: ::x high initial dark current. 

c 4. CONCLUSIONS 

The RHAPS has demonstrated an ,ability to operate from a single power supply at very low power and over a wide 
temperature range, from room temperature to cryogenic conditions, and to very high radiation levels. These are all highly 
valuable assets for space applications. The RHAPS has been evaluated using the star tracker accuracy model developed here, 
and it is found that, with moderate cooling, it can achieve 0.1 pixel accuracy for stars of visual magnitude -5, depending on 
system details. This performance is already useful for many space applications, and anticipated process and design 
improvements should improve this performance further, providing improved accuracy for fainter stars and relaxing cooling 
requirements. 

ACKNOWLEDGMENTS 

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and 
was sponsored by Air Force Space Missile Command and National Aeronautics and Space Administration. The authors 
would also like to tha& Capt. Kevin Carrow, Maj. Tom Grycewicz, and Maj. Chris McCormack, and Dr. John Boyle for 
their support of the radiation hardened CMOS imager development efforts. 

REFERENCES 
1. A.R. Eisenman and C.C. Liebe, “The Advancing State-of-the Art in Second Generation Star Trackers”, IEEE Aerospace 

2. C.C. Liebe, “Star Trackers for Attitude Determination”, IEEE AH Systems Mag. , 10, pp. 10- 16, 1995. 
3. E.R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. on Electron Devices, vol. 44, pp. 

4. S.K. Mendis, S.E. Kemeny, B. Pain, R.C. Gee, Q. Kim, and E.R. Fossum, “CMOS active pixel image sensors for highly 

5 .  B.R. Hancock and G.A. Soli, “Total dose testbg of a CMOS charged particle spectrometer”, IEEE Trans. NUC. Sci., 44, 

6. M. Cohen and J.P. David, “Radiation Induced Dark Current in-CMOS Active Pixel Sensors”, IEEE Trans. NUC. Sci., 47, 

7. G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,’’ IEEE Trans. Nuc. Sci., 47, pp. 2480-2484,2000. 
8. C.C. Liebe, E.W. Dennison, B. Hancock, RC. Stirbl and B. Pain, “Active Pixel Sensor (APS) Based Star Tracker”, IEEE 

9. P.M. Salomon and. T.A. Glavich, “Image Signal Processing in Sub-pixel Accuracy Star Trackers”, in Smart Sensors 11, 

10. J.P. Fillard, “Subpixel Accuracy Location Estimation h m  Digital Signals”, Optical Eng., 31, pp. 2465-2471, 1992. 
1 1. S.B. Grossman and R.B. Emmons, ‘‘Perfonname Analysis and Size Optimization of Focal Planes for Point-Source 

12. B.F. Alexander and K.C. Ng, “Elimination of Systematic Error in Subpixel Accuracy Centroid Estimation”, Optical 

13. K.A. Winick, “Cramer-Rao Lower Bounds on the Performance of Charge-Coupled-Device Optical Position Estimators”, 

14. R.C. Stone, “A Comparison of Digital Centering Algorithms”, Astron. J., 97, pp. 1227- 1237, 1989. 
15. C-L Lu, “Digital Image Centering with the Maximum Likelihood Method”, Astron. Astrophys, 275, pp. 349-353, 1993. 
16. B.R. Hancock, T.J. Cunningham, K. McCarty, G .  Yang, C. Wrigley, P.G. Ringold. R.C. Stirbl, and B. Pain, “Multi- 

Conf, 1, pp. 11 1-1 18, 1998. 

1689- 1698,1997. 

integrated imaging systems,” IEEE J.  of Solid-state Circuits, vol. 32, pp. 187- 198, 1997. 

pp. 1957-1964, 1997. 

pp. 2485-249 I , 2000. 

Aerospace Con$, 1, pp. 1 19- 127, 1998. 

Proc. SPIE, 252, pp. 64-74, 1980. 

Tracking Algorithm Applications”, Uptical Eng., 23, pp. 167-176, 1984. 

Eng., 30, pp. 1320- 1330, 1991. 

J.  Optical SOC. Am. A ,  3, pp. 1809-18 15, 1986. 

Megarads(Si) Radiation Tolerant Integrated CMOS Imager”, SPIE Photonics West, 200 1. 


